UDP-galactose (SLC35A2) and UDP-N-acetylglucosamine (SLC35A3) Transporters Form Glycosylation-related Complexes with Mannoside Acetylglucosaminyltransferases (Mgats).
نویسندگان
چکیده
UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) form heterologous complexes in the Golgi membrane. NGT occurs in close proximity to mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5). In this study we analyzed whether NGT and both splice variants of UGT (UGT1 and UGT2) are able to interact with four different mannoside acetylglucosaminyltransferases (Mgat1, Mgat2, Mgat4B, and Mgat5). Using an in situ proximity ligation assay, we found that all examined glycosyltransferases are in the vicinity of these UDP-sugar transporters both at the endogenous level and upon overexpression. This observation was confirmed via the FLIM-FRET approach for both NGT and UGT1 complexes with Mgats. This study reports for the first time close proximity between endogenous nucleotide sugar transporters and glycosyltransferases. We also observed that among all analyzed Mgats, only Mgat4B occurs in close proximity to UGT2, whereas the other three Mgats are more distant from UGT2, and it was only possible to visualize their vicinity using proximity ligation assay. This strongly suggests that the distance between these protein pairs is longer than 10 nm but at the same time shorter than 40 nm. This study adds to the understanding of glycosylation, one of the most important post-translational modifications, which affects the majority of macromolecules. Our research shows that complex formation between nucleotide sugar transporters and glycosyltransferases might be a more common phenomenon than previously thought.
منابع مشابه
Structure and function of nucleotide sugar transporters: Current progress
The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glyc...
متن کاملPotential regulation of nuclear UDP-N-acetylglucosaminyl transferase (OGT) by substrate availability: ability of chromatin protein to bind UDP-N-acetylglucosamine and reduce OGT-mediated O-Linked glycosylation.
UDP-N-acetylglucosaminyl transferase (OGT) resides in both cytosolic and nuclear compartments and catalyzes O-linked glycosylation of various proteins. In the current study, we have extracted protein from nuclear DNA (chromatin protein) using 0.2% NP-40 detergent. Addition of chromatin protein to either cytosolic or nuclear preparations (containing abundant OGT) resulted in a dose-dependent los...
متن کاملUDP-Galactose 4′-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster
In both humans and Drosophila melanogaster, UDP-galactose 4'-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital subs...
متن کاملSQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose.
Caenorhabditis elegans sqv mutants are defective in vulval epithelial invagination and have a severe reduction in hermaphrodite fertility. The gene sqv-7 encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi membrane. A Golgi vesicle enriched fraction of Saccharomyces cerevisiae expressing SQV-7 transported UDP-glucuronic acid, UDP-N-acetylgalact...
متن کاملSialyl Lewis A/X Determinants Implication in Synthesis of Thomsen-Friedenreich Antigen and Messenger RNA in Human Colon Cancer Tissues and Its Increased Expression of UDP-Galactose Transporter
A series of human nucleotide sugar transporters of the Golgi apparatus was recently cloned, including the transporters for UDP-galactose (UDPGal), UDP-N-acetylglucosamine (UDP-GlcNAc) and CMP-sialic acid (CMP-SA). We have examined the mRNA expression of these three transporters in human colon cancer tissues by reverse transcription-PCR analysis and compared it with that in nonmalignant colonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 25 شماره
صفحات -
تاریخ انتشار 2015